
International Journal of Computer Trends and Technology Volume 73 Issue 5, 113-124, May 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I5P115 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Comparative Performance Evaluation of Modern

Container Security Agents: Red Hat ACS, Wiz,

SentinelOne, and Tenable

Harikishore Allu Balan1, Bikash Agarwal2

1,2T-Mobile, Principal Solution Architect, WA, USA.

1Corresponding Author : harikishore.allubalan@ieee.org

 Received: 29 March 2025 Revised: 02 May 2025 Accepted: 16 May 2025 Published: 30 May 2025

Abstract - Containerized microservice applications have become the central design entity for how modern development and

operations teams build and deploy software. Robust, configurable, and adaptable security agents are important in securing

the applications. This article offers a closely monitored study with a detailed examination of four widely implemented

container security platforms—Red Hat Advanced Cluster Security (ACS), Wiz, SentinelOne, and Tenable. Unlike off-shelf

comparisons by third-party agents, our analysis is grounded in the practical development and deployment of the agents with

realistic user traffic environments. The evaluation of each security agent's capabilities in handling vulnerabilities like threat

detection, runtime defence, policy enforcement, and deployment pipeline integration are continually measured and

compared. While the security agents met all basic security expectations for our study, we had to consider voice applications

and how they balance operational efficiency, deployment complexity, and overall protection strategy. This comparative

insight will help organizations like ours select a solution aligned with their specific cloud-native architecture and security

posture.

Keywords - Container Security, Kubernetes, Red Hat ACS, Wiz, SentinelOne, Tenable, DevSecOps.

1. Introduction
The evolution of applications towards containerization

and Kubernetes as a runtime orchestrator for PODs has

reshaped how modern organizations build, deploy, and scale

their applications. The cloud platform offers faster iteration

cycles, workload portability, and operational consistency

across environments. However, they also introduce new and

complex security challenges, often misaligned with

organizational standards. The dynamic, fully managed

containers, with their short lifespans and the distributed

nature of Kubernetes clusters, create gaps that traditional

security tools are not equipped to handle effectively.

Despite the industry growth towards container adoption

growing faster and faster, there remains a clear research and

implementation gap around how runtime threats are detected

and managed in real-world environments. Many

organizations still partially rely on static scanning or

configuration checks and are more often reactive to security

incidents, which, while important, are insufficient to meet

current cloud requirements to monitor the threats and lateral

movement within a cluster actively. Moreover, the rapid

pace at which DevOps models are being implemented has

outstripped the capabilities of legacy security models to

provide meaningful, actionable insights during execution.

This paper focuses on finding and addressing these gaps by

evaluating and comparing four widely used container

security platforms—Red Hat Advanced Cluster Security

(ACS), Wiz, SentinelOne, and Tenable. The real-world

simulation models document the investigation and analysis

of how each platform performs across core areas such as

live threat detection, runtime enforcement, compliance

integration, and operational efficiency. Our goal is to help

security practitioners understand the importance of

application design concerning security agents' coexistence,

where each tool fits in modern DevSecOps workflows, and

how well it balances visibility, protection, and performance

in cloud-native infrastructure.

2. Methodology
To thoroughly evaluate the effectiveness of today’s

leading container security solutions, we went beyond vendor

claims and marketing whitepapers. While most tools attempt

to position themselves as the most capable, their

performance is often judged under artificial or narrowly

defined conditions. In contrast, our approach involved

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Harikishore Allu Balan & Bikash Agarwal / IJCTT, 73(5), 113-124, 2025

114

deploying these solutions in a hybrid testbed that mirrors the

complexity of real-world cloud-native systems.

Our environment combined AWS-hosted Kubernetes

clusters and on-premises infrastructure to replicate

production-grade workloads. This included microservices

communicating over service meshes, APIs exposed to

external clients, and workloads subject to continuous

integration and delivery pipelines. Each security agent—

Red Hat ACS, Wiz, SentinelOne, and Tenable—was

evaluated under steady-state and adversarial scenarios.

A diverse set of simulated threat scenarios was

carefully designed and executed to assess how each security

platform performs under realistic attack conditions. These

included container breakout attempts, privilege escalation

exploits, reverse shell injections, and deployment of known

malicious payloads. The team leveraged well-established

industry tools such as kube-hunter and kube-bench and

custom scripts aligned with the MITRE ATT&CK

framework for containerized environments.

What sets this evaluation apart is that the testing was

conducted with near-production user traffic. Rather than

isolating the test conditions in a lab, the threats were

introduced during active user session emulation—mirroring

real-world operational complexity. The test ensured that the

results focused on how well each agent detected and

responded to attacks and their effects on the underlying

application system under realistic workload pressure.

2.1. Five Critical Performance Dimensions

2.1.1. Detect and Visibility

Agents' runtime behavior, anomalies, and

misconfiguration possibilities.

2.1.2. Runtime Protection

Real-time threats such as SSH privilege access

escalation and container drift with privilege escalation.

2.1.3. Compliance Check

Agents support key security standards, primarily CIS

Benchmarks, NIST, and PCI-DSS.

2.1.4. DevSecOps with CI/CD Integration

Agent support to CI/CD workflows, infrastructure as

code (IaC), and GitOps practices. Performance Overhead –

What is the impact on CPU and memory resources at both

the pod and node levels?

2.1.5. Performance Overhead

What is the impact on CPU and memory resources at

both the pod and node levels?

The test ensured that the results focused on how well

each agent detected and responded to attacks and their

effects on the underlying application system under realistic

workload pressure.

Five critical performance dimensions:

Detect and Visibility – Agents' runtime behavior,

anomalies, and misconfiguration possibilities.

Runtime Protection – Real-time threats such as SSH

privilege access escalation and container drift with privilege

escalation.

Compliance Check – Agents support key security

standards, primarily CIS Benchmarks, NIST, and PCI-DSS.

DevSecOps with CI/CD Integration – Agent support to

CI/CD workflows, infrastructure as code (IaC), and GitOps

practices. Performance Overhead – What is the impact on

CPU and memory resources at both the pod and node

levels?

 The approach to the research and analysis work

established in this paper is its grounding in a practical

deployment scenario. For example, Use of reverse shell

attempts to each worker instance, where SentinelOne very

successfully intercepted reverse shell attempts within a

second, while Red Hat ACS was seen to have more

visibility into privilege escalation at the admission control

layer through enforced policies. Agentless solutions, like

Wiz, showed strong trends in the visibility of threats but fell

short in runtime enforcement when rapid response was

needed. Based on the other detailed findings, the paper

underscores the importance of selecting the right security

tool for an application-specific design approach based on

features and how it handles realistic load with real risk. For

cloud-native environments—especially those managing

sensitive data or exposed to public access—agents with

runtime visibility and automated response mechanisms offer

a clear operational advantage.

3. Industry-standard Security Agents for

Container Platforms
3.1. Red Hat Advanced Cluster Security (ACS)

Red Hat ACS is a native solution from Kubernetes that

offers strong runtime threat detection and policy

enforcement features. The agent platform integrates

seamlessly with the Red Hat OpenShift cloud provider

platform and is compatible with upstream Kubernetes

environments. The ACS depends primarily on technologies

like eBPF and Kubernetes admission controllers, enabling it

to track container activity and intervene in potentially

harmful operations before they materialize into threats. The

solution is more tailored to suit multiple applications and

Harikishore Allu Balan & Bikash Agarwal / IJCTT, 73(5), 113-124, 2025

115

supports customizable policy frameworks, allowing teams

to govern workload behavior precisely. The minimum

configuration for ACS is 200 millicuries of CPU and 256

MiB of memory per instance, making it a practical fit for

production clusters concerned with stability and overhead.

3.2. Wiz

Wiz, on the other hand, takes a markedly different

approach by offering agentless cloud security. Rather than

running inside the cluster, Wiz connects via cloud provider

APIs to scan for misconfigurations, compliance risks, and

potential vulnerabilities across infrastructure layers within

the cluster. This agentless design makes Wiz particularly

well-suited for organizations operating in multi-cloud

environments or seeking to reduce deployment friction.

Although it does not provide real-time runtime enforcement,

its strength lies in broad, cross-environment visibility. Wiz

delivers comprehensive context with a minimal footprint

that imposes the need for very low demands on CPU and

memory, making it ideal for security-aware but

performance-sensitive environments.

3.3. SentinelOne

SentinelOne is an agent-based endpoint security

solution requiring a dedicated Kubernetes domain resource

through an agent-based deployment model. The core

functionality mainly centres around real-time behavioral

analysis using machine learning and eBPF-based kernel

system space tracing. The agent can be configured to have

proactive monitors running on the container continuously

and reacting to threats autonomously, offering a robust layer

of defence against emerging and evasive threats. This

capability demands a higher cost of operation, whereas the

SentinelOne agent requires up to 1 vCPU and approximately

1 GiB of memory. It is most appropriate for high-assurance

environments where security needs outweigh infrastructure

efficiency.

3.4. Tenable

Tenable is one more agentless security platform

focused on visibility, compliance, and vulnerability

management. It can also be integrated directly with the

cloud provider's platform to assess configuration hygiene

and identify only known risks. The agent also provides

modes in which a deeper runtime insight is provided, and

the platform allows optional lightweight agents to be

deployed selectively. The agent has very modest

requirements—about 200 MiB of memory and 100

millicuries of CPU—providing enhanced visibility without

significantly affecting the overall application performance.

Tenable’s architecture and scanning methodology make it

an ideal candidate for organizations prioritising auditability

and governance, even if runtime intervention is not their

primary concern.

4. Comparative Analysis Security Agent
A detailed understanding of differences between

container security agents will require a deeper analysis of

not more than a glance at marketing claims. To develop our

analysis, we draw out a specific requirement on application

performance with meaningful insights into the security

agents' minimum requirements. This paper assessed by

comparing Red Hat ACS, Wiz, SentinelOne, and Tenable

based on real-world criteria in the telecom application field

that reflect how security tools are used in operational

environments. Each tool is compared across detection

techniques, vulnerability scan models, machine learning

capabilities, cloud compatibility, and overall resource

utilization impact under multiple application load

conditions.

Red Hat ACS and SentinelOne primarily showed more

compatibility with telecom workloads, where high reliability

is a must. As both agents have a strong performance in

runtime protection, both leverage deep and easy integration

into Kubernetes via eBPF and kernel-level monitoring.

Within OpenShift environments, the Red Hat ACS is very

well suited, offering native admission control policies and

Kubernetes-native deployment. Its ability to intercept and

enforce policies at runtime makes it a preferred choice for

telecom applications, which must protect data integrity at

every acceptance.

Table 1. Feature Comparison of Container Security Tools

Feature Red Hat ACS Wiz Sentinel One Tenable

Detection Efficacy High Medium High Medium

Runtime Protection Yes No Yes Limited

Compliance Support Strong Strong Medium Strong

CI/CD Integration Deep Strong Basic Basic

Agentless Option No Yes No Yes

Resource Overhead Moderate Low High Low

Cloud Coverage Kubernetes Broad Kubernetes Host Kubernetes, ECS

Ease of Deployment Moderate High Moderate High

Harikishore Allu Balan & Bikash Agarwal / IJCTT, 73(5), 113-124, 2025

116

Wiz and Tenable are both light agentless deployment

models, prioritizing cloud-wide visibility and compliance

reporting over direct intervention. Wiz is widely accepted in

multicloud platforms with both containers and VMs hosted

and has direct integration into CSP metadata with

configuration scanning capabilities. Wiz offers runtime

protection; it excels in vulnerability management and is

well-suited for applications that are deployed in a hybrid

cloud infrastructure.

From the Use of machine learning standpoint,

SentinelOne offers local support for various ML modes,

which provides a potential advantage in detection

capabilities. Sentinel One AI engine is configured to

continuously learn from runtime behavior, allowing it to

identify anomalies without relying on static signatures. The

Wiz model uses ML for risk prioritization and sensitive data

classification; this is done through its integration with

models like LLaMA and NVIDIA’s NIM framework. These

ML features enhance the day-to-day operational teams with

visibility and contextual risk understanding, particularly for

cloud assets. CI/CD and the workflow pipeline integration

with security agents are key in controlling the security risk

with software deployments. Red Hat ACS provides a wide

variety of tools and support, like Argo CD, OpenShift, and

Jenkins, enabling engineering teams to embed security pre-

and post-checks earlier in the development process. Wiz,

which is much suited for multi-cloud platforms, supports

integration with infrastructure-as-code pipelines like

Terraform and GitHub Actions. At the same time,

SentinelOne and Tenable provide some basic features on

such platforms.

Overall, the model provides various options for

multiple application types, and the choice to pick a specific

platform comes down to organizational goals and

operational needs. Agent-based solutions like Red Hat ACS

and SentinelOne offer deeper protection and intrusion

detection with runtime enforcement and behavioral analytics

but consume more resources. Agentless tools like Wiz and

Tenable deliver deeper metrics and insights into cloud

visibility and enable faster deployment to various

application platforms with a much lower impact on system

performance. The table below provides very high-level

details on key features offered by each platform and

provides a guide for the engineering team to meet their

organizational goals.

Table 2. Initial intrusion detection methods

Tool Instrumentation Method(s) Agent Type

Red Hat

ACS

Daemon Set with kernel-level hooks, Admission controllers, and eBPF for runtime

events
Agent-based

Wiz API polling, CSP metadata analysis, Snapshot scanning Agentless

Sentinel

One

Daemon Set agent, Kernel hooks and syscall tracing, eBPF, Machine learning-based

anomaly detection.

Agent-based

(heavy)

Tenable
Cloud API scanning, Optional agent, Passive network traffic analysis, Container image

scanning

Primarily

agentless

Table 3. Machine learning model modes

Tool ML Component Use Case

Wiz Risk Prioritization Cloud metadata modeling

Wiz LLaMA/NVIDIA NIM Data classification

SentinelOne Static AI Engine File and binary classification

SentinelOne Behavioral AI Engine
Runtime behavior and

anomaly detection

5. Critical Security Vulnerability
5.1. 2022 – CVE-2022-0492

In early 2022, a critical vulnerability was highly visible

in the Linux operating platform using unprivileged user

namespaces. In Kubernetes clusters, the vulnerability was

seen to have provided the attackers with the ability to escape

the container boundary and escalate privileges on the host

system, particularly when mandatory security requirements

like AppArmor or second were not fully configured.

This incident served as a quick wake-up call to all

cloud administrators, illustrating that even hardened systems

could be exposed if kernel-level safeguards are overlooked.

It drove the initiative in the organization to apply a security

policy with more strict roles and access privileges and to

have a feature to react and adapt to runtime threats.

5.2. 2023 – CVE-2023-3676

 In 2023, Kubernetes base release’s admission webhook

handling found this critical high-severity vulnerability. The

flaw provides loopholes where attackers can craft malicious

requests; attackers could easily bypass cluster admission

control policies and inject unauthorized workloads. Since

webhooks are heavily used in cloud operations to enforce

security and governance, the exploit exposed one critical

weak point in Kubernetes control plane logic. The proactive

fix for this CVE prompted many teams to re-evaluate their

webhook configurations, applying zero-trust principles at

every cluster policy endpoint.

Harikishore Allu Balan & Bikash Agarwal / IJCTT, 73(5), 113-124, 2025

117

Table 4. Critical vulnerabilities by year

Year
Number of CVEs Reported

(Critical)
Notable Examples

2022 18 CVE-2022-0492, CVE-2022-23648

2023 24 CVE-2023-2431, CVE-2023-3676, CVE-2023-2728

2024 31 CVE-2024-10220, CVE-2024-29990, CVE-2024-9042

5.3. 2024 – CVE-2024-10220

 This vulnerability was found in the deprecated gitRepo

volume in a cluster. The vulnerability allowed attackers with

gitRepo access to have pod-creation rights on the cluster to

run unauthorized code by injecting malicious Git hooks into

workload start-up routines. The issue was highly impactful

where it was since up to Kubernetes version v1.30.2. The

immediate mitigation step was to block CSI-based volumes

and implement volume control methods to remove legacy

volumes from local repositories. The flaw highlighted the

most avoided work in every organization: cleaning up old

records and volumes.

6. Experimental Setup
The Setup was deployed with a focus on having a

detailed comparison of each security agent concerning the

application under real-world operating conditions, and the

deployment of two parallel Kubernetes clusters in telco

enterprise-grade environments was keen in evaluating the

Public vs Private offering of Kubernetes clusters in the

market. The Amazon Web Services (AWS) with in-house

Elastic Kubernetes Service (EKS) was publicly hosted,

while the second was in a controlled lab with Red Hat

OpenShift Container Platform (OCP). For the onboarded

workload telecom applications, each platform was

configured to use natively certified cloud storage solutions

such as Amazon S3 and Elastic Block Store (EBS) for AWS

and Ceph-backed OpenShift Data Foundation (ODF) for

Red Hat.

Both clusters were deployed with similar workload

application capacity configuration with 20 worker nodes,

three masters, and three storage with CICD pipelines to

support telecom-grade workloads for IMS services like

IR92(voice), video IR(94), messaging, one-on-one and

group chat, and conferencing. The application dimensioning

was measured to support up to 1 million simulated users and

reflect near production capacity and session volumes in a

telecom environment.

The Lab setup used multiple production reflective busy

hours trends to simulate the peak usage. Traffic was

generated using multiple levels of user capacity load on

applications, including a TAS (Telephonic Application

Server): the SIP-based clients provided real-world UE

sessions like registrations, mobile-originated and terminated

calls, and multiparty conferences and real-time messaging.

The simulation load was generated using the script from

Spirent test equipment and SIP proxy simulation tools, with

the call model taken directly from production busy hour

sessions.

The test was conducted on multiple days, with each

day, the user capacity increased by 50,000 users, allowing

us to gradually build up traffic to a total of 1 million users

while also capturing the gradual details on security agents.

This approach enabled us to study how clusters and their

associated security layers adapted to growing demand and

diverse service interactions.

Security agents were deployed in both environments

with flexible configurations, allowing us to turn Wiz,

SentinelOne, Red Hat ACS, and Tenable on or off

independently or in combination. Each tool was evaluated in

24- to 48-hour test windows during different traffic

milestones, allowing us to compare their performance in

stable and escalating load conditions.

The analysis captured a wide range of performance and

security indicators. Beyond resource consumption (e.g.,

CPU, memory, and I/O), we also measured the ability of

each agent to detect and respond to live threats. Controlled

simulations included:

• Reverse shell intrusions

• DNS spoofing and response corruption

• Privilege escalation attempts

• Distributed Denial-of-Service (DDoS) attacks

• Malicious container behavior mimicking insider

activity

This testbed provided a robust and practical framework

for comparing agent capabilities. Unlike synthetic

benchmarks, our Setup reflected real operational challenges,

giving us a clear view of how well each solution performs in

a demanding, cloud-native telecom environment under high

user density and dynamic traffic patterns.

Harikishore Allu Balan & Bikash Agarwal / IJCTT, 73(5), 113-124, 2025

118

Fig. 1 CPU Consumption by Security Agents

Fig. 2 Memory Consumption by Security Agents

0

200

400

600

800

1000

1200

1400

CPU consumption by Security Agents

Red Hat ACS CPU (millicores) Wiz CPU (millicores)

SentinelOne CPU (millicores) Tenable Memory (MiB)

0

200

400

600

800

1000

1200

1400

1600

Memory Consumption by Security Agents

Red Hat ACS Memory (MiB) Wiz Memory (MiB)

SentinelOne Memory (MiB) Tenable Memory (MiB)

Harikishore Allu Balan & Bikash Agarwal / IJCTT, 73(5), 113-124, 2025

119

7. Application Overhead with Security Agents
The performance impact of such agents depends on

how each agent is architected within the cluster, how it

operates, and the frequency at which it monitors system

activities with proactive measures to tackle them in case of

vulnerability detection. The typical agent-based solutions,

like Red Hat ACS and SentinelOne, are configured on the

cluster as DaemonSets or sidecar containers across each

worker node. These agents provide multiple features for

robust, real-time detection and protection by continuously

analyzing the management network on workloads for any

runtime behavior changes and intercepting threats as they

emerge. The features and services always come with a cost

on infrastructure. The sidecar agents have dedicated

requirements on CPU and Memory and tend to overcommit

their reservations in case of reactive threat mitigations,

which can strain clusters running dense workloads.

The lab environment uses a highly resource-constrained

environment, with reserved capacity for the security agents,

and any overcommit could lead to slower performance on

the application pod by lowering node efficiency and, in

some cases, restarting the complete worker instance.

SentinelOne is a particular agent with a very high resource-

intensive requirement due to its features providing

behavioral AI and continuous system tracing. The other two

agents, agentless platforms like Wiz and Tenable, have less

impact on the cloud platform and use a very less intrusive

approach. These tools do not reside inside the cluster.

Instead, they connect externally via cloud provider APIs to

assess configurations, scan metadata, and detect risks across

cloud assets. This design keeps resource usage minimal

within the cluster itself. While this approach reduces the

performance impact on workloads, it also limits the agent’s

ability to detect or react to threats in real-time, particularly

those that arise inside running containers.

In the experimental clusters, these theoretical trade-offs

were visible. During instruction-level testing—such as

privilege escalation attempts and reverse shell triggers—

agent-based tools exhibited sudden CPU and memory

spikes, directly impacting application capacity. In some

instances, service pods were delayed or rescheduled due to

resource contention with the security agent itself. This was

especially evident when reaching higher user concurrency

levels, where any overhead was amplified. Additionally,

some agents, particularly those with behavioral or forensic

logging features, demanded significant storage bandwidth to

write telemetry and event logs. This was seen in the event

logs on both AWS (S3/EBS) and Red Hat (Ceph ODF)

clusters. When the application user capacity peaked at 1

Million users, these events on storage I/O contention led to

latency SIP session binding into the local storage platform

and call data record processing. However, this slowed the

cloud application storage solution, affecting the security

agents' delayed detection of threats caused by lagged data

ingestion.

To keep a healthy balance between application and

security agents, which need to coexist to have better

protection and overall performance, the engineering and

security teams must adopt well-planned resource

management considering the rainy cases where cluster

capacity is over-exhausted. The runtime agent with right

guard rails and dedicated CPU pinning and memory limits

would leverage Kubernetes to schedule these agents with

higher Quality of Service (quality of service) tiers and

isolate agent processing with application workloads on

dedicated CPU-pinned zones, thereby helping to prevent

resource contention. Furthermore, the data restoration, fine-

tuning log retention, and the storage I/O max rate with

multiple verbosity levels can minimize the performance

degradation caused by agents that depend on data for ML

algorithms to prevent runtime operations. These

observations can be seen on the chat below, showing each

agent's performance at two application capacity variations

with high call volume and heavy read-write telecom

workload instances.

Fig. 3 Comparative impact of container security agents on CPU, memory, deployment complexity, and visibility

Harikishore Allu Balan & Bikash Agarwal / IJCTT, 73(5), 113-124, 2025

120

Table 5. Pods Deployed on Node

Pod Name Type
vCPU

millicuries
Memory

app-voice-1 Application Pod 1000 2048 MiB

app-video-1 Application Pod 1500 3072 MiB

app-messaging-1 Application Pod 800 1536 MiB

app-conference-1 Application Pod 1200 2048 MiB

security-agent-s1 Security Agent (S1) 1000 1024 MiB

kube-proxy System Daemon 200 256 MiB

kubelet + system System Services 300 512 MiB

8. Underlying Risk with Security Agents
Example: Resource Allocation on a Single Kubernetes

Worker Node

8.1. One Cluster Node Specs

• vCPUs: 8 (8000 millicuries)

• Memory: 16 GiB (16384 MiB)

Total Resource Usage:

• Total CPU Requested:

1000 + 1500 + 800 + 1200 + 1000 + 200 + 300 = 6000

millicuries (75%)

• Total Memory Requested:

2048 + 3072 + 1536 + 2048 + 1024 + 256 + 512 =

11,496 MiB (≈70%)

8.2. Intrusion Event Scenario

When the security agent detects malicious activity—

e.g., a reverse shell attempt or privilege escalation—it

triggers intensive logging, behavior tracing, and memory

analysis. This led the security agent to overcommit the CPU

requirements to perform the operation tied to analyzing and

reporting. In our testing, we saw CPU overcommits

exceeding 200% in some cases for Sentinel One and RedHat

ACS security agents.

While container security agents are critical for

defending modern workloads, their Use introduces a unique

set of operational risks that, if overlooked, can compromise

the systems they aim to protect. These risks do not negate

the need for such tools but highlight the importance of

deploying and managing them thoughtfully.

One of the most common challenges is resource

overcommitment. Agent-based security agents primarily

include Red Hat ACS and SentinelOne, which run as

DaemonSets or sidecar containers. Under routine sunny day

conditions, their impact may be minimal. However, when

the system is under attack or has an anomaly pattern

detected with system access, these agents without strict

guardrails have been seen to have more than the reserved

consumption on CPU or memory.

If resource limits are not properly set, this behavior can

put stress on the application pods hosted on a worker node,

potentially leading to pod evictions in case of resource over-

commitment, thereby causing application performance

degradation or creating signalling lags for mission-critical

services, especially in clusters where applications are tightly

coupled with very less resource headroom.

Another major concern with such a security agent

involves privileged access exposure. To provide deep

visibility and runtime control from vulnerability threats,

ACS and SentinelOne require elevated permissions to take

preventive steps, such as access to cluster networking,

application container runtime sockets, and ACL rule

updates. If any of these permissions are misaligned or

misconfigured, they can be exploited, they can become the

entry points for attackers.

Application Latency overhead is a critical case for

consideration, particularly in a cluster where application

uptime is needed at 99.999 % at any given time, and

performance is closely monitored or guaranteed through

service-level agreements (SLAs) with customers. Security

agents monitoring the POD-to-POD syscall access logs or

performing kernel-level deep packet inspection can

introduce minor, measurable delays in applications with

user traffic sharing the same kernel space. Such delays are

often acceptable in general workloads. However, in high-

reliability workloads with application pods with affinity and

anti-affinity rules, the impact is real-time applications'

performance degradation with a minor spike in agents' drift

in policy.

The other issue, which was proactively seen and

captured in our experiments, is that deployments of these

agents across all workload instances can sometimes drift

and have inconsistent updates. In clusters deployed across

multiple racks with hundreds of nodes, it is easy for agent

versions to fall out of sync, either due to overlooked updates

or custom configurations. The outdated agents in day-to-day

operations are often not keenly monitored. They can be an

easy loophole or security blind spots, reduce detection

Harikishore Allu Balan & Bikash Agarwal / IJCTT, 73(5), 113-124, 2025

121

accuracy, or cause compatibility issues when upgrades are

planned.

Lastly, the key observation seen in testing was many

false positives and alert fatigue, which were seen

persistently from day 1. The agents that have trends to

detect behavioural changes in access patterns are often seen

to flag legitimate activity as malicious. This can lead to

unnecessary operational overhead on organizations in teams

working constantly to filter out these alerts from legitimate

events. False events can also disrupt deployment pipelines.

If automated responses are enabled in CI/CD pipelines, they

can lead to terminating a healthy workload instance.

To mitigate these risks, application design, security, and

operational teams must plan to implement best practices:

with stringent resource boundaries, apply role-based access

controls and prevent the need for privileged access by

policies, standardize CI/CD workflows pipeline with

scanning software images, and ensure alerting pipelines are

integrated with SIEM or SOAR platforms for contextual

triage.

The planning of these standards needs to be in every

cloud-native application design; with these practices in

place, security agents are highly trusted to provide deep

protection without compromising application performance.

Table 6. Resource and Privilege Risk by Agent

Agent
Can Overcommit

CPU

Needs Elevated

Privileges
Notes

Red Hat ACS Yes Yes DaemonSet with eBPF; enforce limits

Wiz No No Agentless; low risk from deployment

SentinelOne Yes Yes Runtime ML agent; high overhead risk

Tenable No No/Optional Agentless or optional lightweight sensor

Properly planning cluster resourcing with dedicated

quotas to security agents with the proper privilege controls

and constant telemetry data monitoring is important to

mitigate these risks. All agents must be tested fully in lab-

stage environments before production rollouts.

9. Security by Design in Cloud-Native

Infrastructure
Security is necessary for every application design and

cannot be treated as an afterthought or something that can

only be deleted when an incident is observed. With the

growing cloud infrastructure and application adaptation to

such environments, whether it is in public, private, or multi-

tenant cloud infrastructure, security must be a part of the

application deployment design. As organizations adopt and

rapidly transform towards containerized architectures, the

security loopholes and vulnerabilities to attacks also

increase rapidly. Risks such as misconfigurations, allowing

privilege escalation, and compliance expectations on drift

become more likely and harder to correct if not

implemented during initial deployment.

Cloud-native applications provide flexibility to be

dynamic by nature. The platform provides applications with

dynamic capacity by resource or instance scaling, span

across multiple availability zones, and run as sidecars,

which are very short-lived, interdependent workloads. The

need to close any design gaps around the security in such

fast-moving environments will need to be planned at the

very beginning, during architecture planning and

requirements gathering, and not patched in after the system

goes live.

The key plan for such a cloud application design is to

put the security requirements first and build the application

around them security requirements. Teams should also

determine what level of action needs to be taken during a

security breach event by carefully identifying the most

secure data and providing additional security controls in

accessing such information, which compliance standards

apply (e.g., PCI-DSS, HIPAA, NIST) and what kinds of

threat models are best fit for the workload. Cloud

deployment core architectural decisions should reflect these

requirements, with zero trust, role-based privilege policy,

network segmentation, and data encryption in flight and at

rest.

The Cloud Security Principle includes the following:

• Continuous vulnerability and configuration scanning

are used to detect and correct issues before they become

exploitable.

• Identity and access governance, using RBAC and

centralized IAM to control who can access workloads,

data, and infrastructure.

• Runtime monitoring to catch behavioral anomalies,

insider threats, and active intrusions.

• Automated compliance validation to generate audit-

ready reports and reduce the burden of regulatory

assessments.

To further improve operational resilience, especially in

latency-sensitive environments like telecom networks, it is

recommended that security agents have access to dedicated

storage volumes. These volumes should have a defined path

for mounting critical data events like logs, alerts, or forensic

data without interfering with the primary application’s I/O

Harikishore Allu Balan & Bikash Agarwal / IJCTT, 73(5), 113-124, 2025

122

in the storage cluster. This approach to storage design

reduces the risk of write latency during high-traffic security

incidents, such as network anomalies, DDoS attempts, or

privilege escalations. It ensures that security telemetry does

not interfere with or degrade application performance. For

telecom-grade applications in particular, such resilience is

crucial to maintaining uptime and user experience at any

given time.

10. Budgeting for Secure Application Delivery

in Modern Cloud Environments
The budget allocation reflects the organisation's goals

in protecting and preventing security threats to mission-

critical applications. In every project or application design, a

substantial share of investment is always directed toward

traditional development, deployment, and operational

maintenance. The budget must prioritize security from the

beginning and acknowledge its critical role in today’s

dynamic cloud-native application environments.

Findings from the comparative analysis of security

agents with respective vulnerabilities observed on the

platform support this argument of having the proper budget

to plan, test, and implement security measures. The network

breaching testing with and without security agents provided

different setups, where in deployment, security agents

observed and alerted the threat. In contrast, the cluster with

the agents in monitor or inactive mode allowed back actors

to access valuable data on the platform. When the agents are

deployed without the right resource isolation or tuning, they

can instantly overcommit, and this is primarily seen with

SentialOne agents affecting the performance of core

application workloads, particularly during traffic surges or

threat detection events. The productive analysis from this

test result shows the importance of having the right resource

planning and budgeting the cost of such resource

requirements at the beginning, which is essential for reliable

and resilient application deployments.

The inclusion of the CI/CD pipeline in our deployment

had a key role in enforcing a secure check on software, even

before the application development lifecycle was started. In

the test environment, any new software code or container

image submitted to the platform is automatically subjected

to vulnerability scanning before it can be promoted for

deployment. Avoiding this step allowed critical

vulnerabilities to be implemented on the cluster, which is

prone to threats and attacks. Including a security scan at the

CI/CD image push step, powered by the integrated security

agents, ensures that only verified, compliant artefacts enter

the runtime environment. By following this requirement,

deployment pipelines help ensure software vulnerabilities

and mitigation steps are addressed first, and by doing so,

security becomes a seamless part of the deployment process,

reducing the risk of introducing known vulnerabilities into

production systems.

In summary, the planning and budget structure for

product or application development that uses public or

private cloud solutions supports application delivery's core

objectives. It aligns with modern security practices'

operational demands. The proper budget enables

organizations to have security resources to deploy faster,

respond to threats more effectively, and maintain

compliance, all without compromising performance or

scalability.

Fig. 4 Application development with security

Harikishore Allu Balan & Bikash Agarwal / IJCTT, 73(5), 113-124, 2025

123

11. Real-World Intrusion Prevention Success
As cyber threats grow more sophisticated, government

agencies and public-sector organizations have responded by

investing in smarter, more proactive security frameworks. In

2024, UK government institutions reported impressive

results, collectively stopping over 15 million cyberattacks.

The Met Office intercepted over five million phishing

attempts alone, while the DVLA successfully blocked

upwards of seven million distributed denial-of-service

(DDoS) attacks. These outcomes were achieved by

implementing modern security technologies that blend real-

time monitoring, behavioral analysis, and dynamic runtime

protection. These tools have become vital in shielding

critical infrastructure from increasingly coordinated and

targeted attacks.

Similar efforts have bolstered federal and state-level

cyber resilience in the United States. The Department of

Homeland Security’s EINSTEIN system, designed to

protect federal networks, now processes over 30,000 daily

alerts. Meanwhile, state and local governments mainly

depend on data from the MS-ISAC Albert system, the

American nationwide network of intrusion detection

sensors, to monitor and analyze suspicious activity across

their digital ecosystems. These public systems have played a

key role in helping software developers gain awareness of

new threats and security loopholes, thereby preventing

ransomware incidents, stopping unauthorized lateral

movement, and identifying supply chain threats before they

escalate.

Overall, in both academic research and industry

findings, the public research data on cloud-native platforms

have shown that runtime-aware tools, such as Red Hat

Advanced Cluster Security (ACS) and SentinelOne, deliver

significant advantages over traditional scanning solutions.

Using dedicated monitoring agents like eBPF on kernel

space and machine learning models to follow and detect

subtle, behaviour-based threats in real-time, capabilities that

signature-based tools typically miss. Public data domains

that track and provide high critical vulnerabilities have

consistently supported this claim, showing higher

integration in sharing this information and visibility in

proactive or reactive measures to control or avoid such

incidents. The study provides good data points for

organizations managing microservices or large-scale

containerized applications, as security agents are rapidly

becoming an essential part of a modern cybersecurity stack.

11.1. Reactive Agent Comparison (Red Hat ACS vs

Sentinal One)

This section focuses on finding the advantages of ACS

and SentialOne with respective reactive security

mechanisms, which have grown to have a higher demand in

telecom cloud application design. This is essential in the

case of public-facing containerized application

environments where threats can evolve and propagate

quickly. These agents were tested for the following four

different capabilities concerning the real-time response

capabilities of four major container security platforms.

Table 7. Runtime reactive capability comparison

Tool
Real-Time

Detection

Automated

Response

Reactive

Flexibility

Red Hat

ACS

Yes (eBPF

+

Admission

Hooks)

Yes (Policy

Enforcement)
High

SentinelOne
Yes (eBPF

+ ML)

Yes (Kill,

Quarantine,

Rollback)

Very High

In the system privilege escalation task test, the data

shows that Red Hat Advanced Cluster Security (ACS) and

SentinelOne stood out for their strong runtime

responsiveness. SentinelOne, with a more dedicated CPU

and Memory distribution model, leverages behavioral

analytics and machine learning to detect real-time

anomalies. The reactive response to a threat by isolating

compromised workloads was also seen to help prevent

attacks and rollback changes. Red Hat ACS, meanwhile,

with a full policy control-based approach, took control of

such an event by creating a new webhook policy update for

runtime instrumentation.

The low-cost agentless platforms like Wiz and Tenable

are seen to show more alerts and data analytics on posture

visibility and misconfiguration detection. The agents were

ineffective in a live attack when system access privilege

requests were granted to a service account. These agents

have robust scanning and compliance capabilities, and the

agentless architectures are fully equipped to handle

continuous system data monitoring for a live attack. This

makes them less suited for real-time threat prevention,

especially in cases where immediate response is required to

maintain data integrity.

In handling data integrity under a security breach, the

lab tests show that reactive security agents are particularly

valuable in such environments. In this case, we tested our

messaging application platform where user data is

encrypted. However, the archived data is stored on cloud

storage platforms, and any downtime of this data or

application handling these events has direct business or

operational consequences. The well-known public

applications where data security is highly valued are

financial services, healthcare systems, and e-commerce

platforms. In such use cases, having a dedicated and

continuous monitoring security framework is a key

requirement for application reliability. Both Red Hat ACS

Harikishore Allu Balan & Bikash Agarwal / IJCTT, 73(5), 113-124, 2025

124

and SentialOne in our analysis have given positive

observations in alerting and preventing zero-day threats,

lateral movement, insider attacks, and policy violation use

cases.

The Red Hat ACS platform More Us was found to have

a more suited approach to applications that provide quick

features and have a short life span on given containers, with

real-time APIs, or have fully automated CI/CD pipelines.

The Red Hat ACS, compared with SentinelOne, has lower

budgeting requirements and provides real-time detection

capabilities, making it idle for fast-changing environments.

12. Conclusion
The data-driven analytical study with a group of voice,

video, and messaging applications shows that security

services and policies are not a universal one-size-fits-all

solution for securing containerized environments. Each

platform assessed in this study—Red Hat ACS, Wiz,

SentinelOne, and Tenable—offers distinct advantages

tailored to different operational needs and deployment

priorities. The test data points to real-world user traffic

patterns at various system load levels, showcasing the

importance of aligning computing resources with specific

needs to meet the organization's commitment to providing

secure, reliable applications.

Solutions such as Red Hat ACS and SentinelOne are

well-suited for scenarios in telecom applications where

runtime visibility and rapid threat response are critical,

especially in voice services. Their agent-based architectures

provide fine-grained control and behavioral analysis

options. They are particularly valuable in regulated sectors

or environments where workload integrity must be

rigorously enforced to avoid application downtime. These

tools empower operational and security teams to monitor

and intervene in real-time, helping mitigate the impact of

live threats before they escalate.

 Conversely, Wiz and Tenable provide a lighter footprint

and greater ease of deployment in multi-cloud tenant

platforms. The agentless models allowed a quick

establishment of security baselines across complex, multi-

cloud, multi-zone, restricted network cloud environments

without reengineering the underlying infrastructure. These

agents have been more stable, consistently perform, and are

well-suited for teams focused on rapid scalability,

compliance tracking, and minimal operational overhead.

 Wiz security agent, among others, has received much

internal support from our development teams as it has a

good framework to integrate seamlessly into DevSecOps

workflows. As many of the IT applications are light and

have little dependence on the underlying hardware platform,

the agentless security platforms were keen to provide

security measures to developers. Wiz enables risk

prioritization and policy mapping without the complexities

of managing in-cluster agents. This approach has proven

effective for organizations seeking agility and actionable

security insights.

Ultimately, the decision to adopt a particular platform

should be guided by an organization's security teams, with

application and operation teams in part of the risk tolerance,

architectural landscape, and long-term security objectives

requirement planning. A thoughtful evaluation of these

trade-offs ensures that the chosen solution meets today’s

needs and scales effectively with future operational growth.

References
[1] Kubernetes, Production-Grade Container Orchestration. [Online]. Available: https://kubernetes.io/

[2] Red Hat, Advanced Cluster Security for Kubernetes. [Online]. Available: https://www.redhat.com/en/technologies/cloud-

computing/openshift/advanced-cluster-security-kubernetes

[3] Wiz, Protect Everything you Build and Run in the Cloud. [Online]. Available: https://www.wiz.io/

[4] SentinelOne: Autonomous Endpoint Protection, Sentinelone. [Online]. Available: https://www.sentinelone.com/resources/sentinelone-

autonomous-endpoint-protection/

[5] Tenable. [Online]. Available: https://www.tenable.com/

[6] The Sun. [Online]. Available: https://www.thesun.co.uk/tech/34784827/number-cyber-attacks-met-office-revealed/

[7] U.S. DHS, Einstein Intrusion Detection System. [Online]. Available: https://en.wikipedia.org/wiki/Einstein_(US-CERT_program)

[8] Center for Internet Security, MS-ISAC Albert Network Monitoring. [Online]. Available: https://www.cisecurity.org/ms-isac

[9] MITRE, ATT&CK® Matrix for Containers. [Online]. Available: https://attack.mitre.org/matrices/enterprise/containers/

[10] Cloud Native Computing Foundation (CNCF), Cloud Native Security Whitepaper. [Online]. Available:

https://www.cncf.io/reports/cloud-native-security-whitepaper/

[11] CSE-CIC-IDS2018 Dataset, Canadian Institute for Cybersecurity. [Online]. Available: https://www.unb.ca/cic/datasets/ids-2018.html

[12] CIC-IDS2017 Dataset, Canadian Institute for Cybersecurity. [Online]. Available: https://www.unb.ca/cic/datasets/ids-2017.html

[13] National Vulnerability Database, NIST. [Online]. Available: https://nvd.nist.gov/

https://kubernetes.io/
https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes
https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes
https://www.wiz.io/
https://www.tenable.com/
https://www.thesun.co.uk/tech/34784827/number-cyber-attacks-met-office-revealed/
https://en.wikipedia.org/wiki/Einstein_(US-CERT_program)
https://www.cisecurity.org/ms-isac
https://attack.mitre.org/matrices/enterprise/containers/
https://www.cncf.io/reports/cloud-native-security-whitepaper/
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://nvd.nist.gov/

